27 research outputs found

    Fully electrically read-write device out of a ferromagnetic semiconductor

    Full text link
    We report the realization of a read-write device out of the ferromagnetic semiconductor (Ga,Mn)As as the first step to fundamentally new information processing paradigm. Writing the magnetic state is achieved by current-induced switching and read-out of the state is done by the means of the tunneling anisotropic magneto resistance (TAMR) effect. This one bit demonstrator device can be used to design a electrically programmable memory and logic device.Comment: 4 pages, 4 figure

    Super-harmonic injection locking of nano-contact spin-torque vortex oscillators

    Full text link
    Super-harmonic injection locking of single nano-contact (NC) spin-torque vortex oscillators (STVOs) subject to a small microwave current has been explored. Frequency locking was observed up to the fourth harmonic of the STVO fundamental frequency f0f_{0} in microwave magneto-electronic measurements. The large frequency tunability of the STVO with respect to f0f_{0} allowed the device to be locked to multiple sub-harmonics of the microwave frequency fRFf_{RF}, or to the same sub-harmonic over a wide range of fRFf_{RF} by tuning the DC current. In general, analysis of the locking range, linewidth, and amplitude showed that the locking efficiency decreased as the harmonic number increased, as expected for harmonic synchronization of a non-linear oscillator. Time-resolved scanning Kerr microscopy (TRSKM) revealed significant differences in the spatial character of the magnetization dynamics of states locked to the fundamental and harmonic frequencies, suggesting significant differences in the core trajectories within the same device. Super-harmonic injection locking of a NC-STVO may open up possibilities for devices such as nanoscale frequency dividers, while differences in the core trajectory may allow mutual synchronisation to be achieved in multi-oscillator networks by tuning the spatial character of the dynamics within shared magnetic layers.Comment: 21 pages, 8 figure

    Direct observation of magnetization dynamics generated by nano-contact spin-torque vortex oscillators

    Full text link
    Time-resolved scanning Kerr microscopy has been used to directly image the magnetization dynamics of nano-contact (NC) spin-torque vortex oscillators (STVOs) when phase-locked to an injected microwave (RF) current. The Kerr images reveal free layer magnetization dynamics that extend outside the NC footprint, where they cannot be detected electrically, but which are crucial to phase-lock STVOs that share common magnetic layers. For a single NC, dynamics were observed not only when the STVO frequency was fully locked to that of the RF current, but also for a partially locked state characterized by periodic changes in the core trajectory at the RF frequency. For a pair of NCs, images reveal the spatial character of dynamics that electrical measurements show to have enhanced amplitude and reduced linewidth. Insight gained from these images may improve understanding of the conditions required for mutual phase-locking of multiple STVOs, and hence enhanced microwave power emission.Comment: 10 pages, 3 figure

    Enhancement of spin mixing conductance in La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>/LaNiO<sub>3</sub>/SrRuO<sub>3</sub> heterostructures

    Get PDF
    Spin pumping and the effective spin-mixing conductance in heterostructures based on magnetic oxide trilayers composed of La0.7Sr0.3MnO3 (LSMO), LaNiO3 (LNO), and SrRuO3 (SRO) are investigated. The heterostructures serve as a model system for an estimation of the effective spin-mixing conductance at the different interfaces. The results show that by introducing a LNO interlayer between LSMO and SRO, the total effective spin-mixing conductance increases due to the much more favorable interface of LSMO/LNO with respect to the LSMO/SRO interface. Nevertheless, the spin current into the SRO does not decrease because of the spin diffusion length of λLNO ≈ 3.2nm in the LNO. This value is two times higher than that of SRO. The results show the potential of using oxide interfaces to tune the effective spin-mixing conductance in heterostructures and to bring novel functionalities into spintronics by implementing complex oxides

    Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by injecting an RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of multiple STVOs that share common magnetic layers.The authors gratefully acknowledge the financial support of the Engineering and Physical Sciences Research Council under grants EP/I038470/1 and EP/K008501/1, the Royal Society under grant UF080837, the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation (KAW). The authors and co-authors declare that there are no conflicts of interes

    Spatial mapping of torques within a spin hall nano-oscillator (article)

    Get PDF
    This is the final version. Available from American Physical Society via the DOI in this recordThe dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.1003Time-resolved scanning Kerr microscopy (TRSKM) was used to study precessional magnetization dynamics induced by a radio frequency (RF) current within a Al2O3/Py(5 nm)/Pt(6 nm)/Au(150 nm) spin Hall nanooscillator structure. The Au layer was formed into two needle-shaped electrical contacts that concentrated the current in the center of a Py/Pt mesa of 4 μm diameter. Due to the spin Hall effect, current within the Pt layer drives a spin current into the Py layer, exerting a spin transfer torque (STT). By injecting RF current and exploiting the phase sensitivity of TRSKM and the symmetry of the device structure, the STT and Oersted field torques have been separated and spatially mapped. The STT and torque due to the in-plane Oersted field are observed to exhibit minima at the device center that is ascribed to spreading of RF current that is not observed for DC current. Torques associated with the RF current may destabilize the position of the self-localized bullet mode excited by the DC current and inhibit injection locking. The present study demonstrates the need to characterize both DC and RF current distributions carefully.Engineering and Physical Sciences Research Council (EPSRC

    Time resolved imaging of the non-linear bullet mode within an injection-locked nano-contact spin Hall nano-oscillator (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this recordThe dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.923Injection of a radio frequency (RF) current was used to phase lock the SHNO to the TRSKM. The out of plane magnetization was detected by means of the polar magneto optical Kerr effect (MOKE). However, longitudinal MOKE images were dominated by an artifact arising from the edges of the Au NCs. Time resolved imaging revealed the simultaneous excitation of a non-linear `bullet' mode at the centre of the device, once the DC current exceeded a threshold value, and ferromagnetic resonance (FMR) induced by the RF current. However, the FMR response observed for sub-critical DC current values exhibits an amplitude minimum at the centre, which is attributed to spreading of the RF spin current due to the reactance of the device structure. This FMR response can be subtracted to yield images of the bullet mode. As the DC current is increased above threshold, the bullet mode appears to increase in size, suggesting increased translational motion. The reduced spatial overlap of the bullet and FMR modes, and this putative translational motion, may impede the injection locking and contribute to the reduced locking range observed within NC-SHNO devices. This illustrates a more general need to control the geometry of an injection-locked oscillator so that the autonomous dynamics of the oscillator exhibit strong spatial overlap with those resulting from the injected signal.We acknowledge the financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1) and EPSRC Grants Nos. EP/I038470/1 and EP/P008550/1
    corecore